8.5

Data Description in the Network Model .

401

example, the set type COLLECTION is owned by the record type BRANCH; the
member record type is BOOK_COPY and the membership criteria of this record type
is manual insertion and optional retention. Therefore, an application program will
have to insert an occurrence of the member record type in the appropriate set occur-
rence. The retention is optional, which means that if a BRANCH type record occur-
rence were to be deleted from the database, all member record occurrences in the set
‘occurrence of the set type COLLECTION owned by the branch record occurrence
will be removed from the set before the owner record -occurrence is deleted. The
member record occurrence continues to exist in the database.

set is COLLECTION
owner is BRANCH

end

member is BOOK_COPY manual optional

Figure 8.24 shows the meaning of the combination of the two membership sta-
tuses for a member record type in a set type.

We can add the status information for insertion and retention of the member B

DUE in the set borrowed as follows:

set is BORROWED
owner is CLIENT

member is BOOK_DUE automatic mandatory

end

must become the responsibility of a client. The retention status is specified as man-

Significance of membership status.

Figure 8.24
FIXED MANDATORY OPTIONAL

A | When a record is created, the When a record is created, the When a record is created, the
U | DBMS places it in a set. The DBMS places it in a set. The DBMS places it.in a set. The
T | record stays there until it is de- | record can move from one oc- record can be moved to another
Q | leted. ' currence of the set to another. occurrence of the set or re-
M moved and later reconnected.
A
T
I
C .

cr>rcZr»

The: record has to be connected
by appropriate data manipula-
tion operations. Once it is con-
nected it stays in the set occur-
rence until deleted.

The record has to be connected
by appropriate data manipula-
tion operations. The record can
move from one set occurrence
to another.

The record has to be connected
by appropriate ‘data manipula-
tion operations. The record can
be moved to another set occur-
rence or te femoved and later
reconnectedl.




404

Chapter 8 The Network Model

Figure 8.28  Data structure diagram for the library schema.

BRANCH ~ BOOK

COLLECTION

COPY_STATUS

l ALL_BOOKS

BORROWED

type BOOK = record
Author: string;
Title; string;
Call_No: integer;

end
type BOOK_COPY = record
Call_No: string;

Copy_No: integer;
Branch_Id: string;
Current_Status: string;
end
type CLIENT = record
Client_No: string;
Name: string;
Address: string;.
end
type BOOK_DUE = record
Call_No: string;
Copy_No: integer;
Client_No: string;
Due_Date: string;
end;
set is BORROWED
owner is CLIENT

end
set is BOOK_COPY_LENT
owner is BOOK_COPY

* BOOK_COPY _LENT

member is BOOK_DUE automatic mandatory

member is BOOK_DUE awtomatic optional

end



8.7 DBTG Data Manipulation Facility 408

8.7

set is COPY_STATUS
owner is BOOKS
member is BOOK_COPY optional manual
end
set is ALL_BOOKS
owner is SYSTEM
member is BOOK
end
set is COLLECTION
owner is BRANCH
member is BOOK_COPY manual optional
end

The subschema is a subset of the schema and corresponds to the ANSUSPARC
external schema. The subsetting of the schema is achieved by omitting from the
subschema one or more data-items in a record, one or more record types, or one or
more set types. In addition, aliases could be used for data-items, records, or sets.
Furthermore, the data-items in the subschema may be given different data types from

those defined for the corresponding data-items in the schema.

DBTG Data Manipulation Facility

8.7.1

The DBTG proposal included a data manipulation facility or language (DML). The
facility included procedural statements, status and currency indicators, special regis-
ters, and conditions. The intent was to provide a number of operations or commands
that could be embedded in a host language; the proposed host language was COBOL.
For discussion here, we use a Pascal-like language as the host language. Before
giving the details of the commands we consider some of the concepts used in the
DBTG proposals to facilitate the understanding of the operations performed by the
DBMS.

Run Unit

Run unit is a DBTG term that refers to each process or task (a program in execution
is a process) that is running under the control of the DBMS. The process may be a
user’s application program containing DML commands or an interactive session with
a user. Two or more users’ processes may be concurrently executing the same appli-
cation program or may be in an interactive session via on online terminal under the

control of a teleprocessing monitor. The DBMS maintains separate records of the

environment of each such run unit. An area of storags is set aside to provide an
independent work space for each run unit. This work space is called the user work
area (UWA). The UWA contains the processing environment of the run unit; the
program being executed may be shared.



. 408 "Chapter 8  The Network Model

Figure 8.28  Data structure diagram for the subschema.

BOOK_COPY

BOOK_COPY_LENT BORROWED

that portion of the database relevant to this user. We give the data structure diagram
for this application in Figure 8.26 and the corresponding subschema below.

Subschema name is Circulation
type BOOK_COPY = record
Call_No: string;
Copy_No: integer;
Branch_Id: string;
Current_Status: string;
end
type CLIENT = record
Client_No: string;
Name: string;
Address: string;
end
type BOOK_DUE = record
Call_No: string;
Copy_No: integer;
Client_No: string;
Due._Date: string;
end;
set is BORROWED
owner is CLIENT
member is BOOK_DUE automatic mandatory
end
set is BOOK_COPY_LENT
owner is BOOK_COPY
member is BOOK_DUE automatic optional
end

The DBTG proposal allows certain differences in the description of data be-
tween the schema and subschema, the DBMS performing the required transforma-
tion. For our purpose here, we used the same data 2zccriptions as tae schema.



3.8  Database Manipulation 409

Figure 8.27 Database contents.

234 Smith Lynn 1234 1 Lynn LENT
234 Klaf Revere 1234 2 Revere LENT
236 Allard Salem 1235 1 Salem LENT

CLIENT ’ 1236 1| Salem LENT

1237 2 Lynn LENT

1234 1 234 DEC 1 1237 1 Salem LENT
1237 1 234 " DEC1 1233 1 Lynn IN
1235 1 236 DEC 8 1238 2 Revere IN
1236 1 236 DEC 11 1238 3 Salem IN
1234 2 236 DEC 11 BOOK_COPY

BOOK_COPY_LENT

The database contains the information for the records CLIENT, BOOK_COPY,
and BOOK_DUE as shown in Figure 8.27

The DBMS maintains a currency indicator for each of the record types and set
types and one for the run unit. We give these indicators in the form of a table in
Figure 8.28. The initial values of the currency indicators for a run unit that uses the
subschema shown above is given in the table. In this case there is one currency
indicator for each of the record types BOOK_COPY, CLIENT, and BOOK_DUE; a
currency indicator for each of the set types BORROWED and BOOK_COPY_LENT;
in addition, there is an indicator for the run unit. The null values indicate that the
datab  has not been accessed.

Figure 8.28 Initial values for the currency indicator for run unit using subscheme Circulation.

_——Indicator Current Value
Run unit null
BOOK_COPY " null
CLIENT ~null
BOOK_DUE null
BORROWED null
BOOK_COPY_LENT null




412

~ Chapter 8 The Network Model

while DB_Status = 0 and not done do
if Call_No = 1234 then

begin
Due_Date : = 12/12;
modify BOOK_DUE;
done : = true;
end

else find for update duplicate

BOOK_DUE using CLIENT_No;

Adding a Record Occurrence

The store command is used to store a new occurrence of a record type in the data-
base. The new occurrence is first created in the template space for the record type in
the UWA and then we execute the command:

store <record type>

This method allows a single record occurrence to be created and stored at one
time. The following statements add the new CLIENT Gold to the database:

CLIENT.Client_No := 237,
CLIENT .Name := ‘Gold’;
CLIENT .Address := ‘Lynn’;
store CLIENT;

If the new record occurrence belongs to a record type associated with a set type,
there must be a mechanism to place the record occurrence in the appropriate set
occurrence. We discuss this in Section 8.8.2.

Deleting a Record Occurrence

An existing record occurrence may be deleted from the data base by use of the erase
command. However, before the record is deleted, we have to locate it using the find
command with the for update clause. As before, this informs the DBMS that the
record may be updated, which in this case means deletion. The following statements
delete the CLIENT Gold added in the previous example:

CLIENT.Client_No := 237,
find for update any CLIENT using CLIENT.Client_No;
if DB_Status = 0 then
erase CLIENT
else  error_routine;

In this example, we use the DB_Status register to verify that the find operation
was successfully completed before executing the next statement.

In the case where a record occurrence to be deleted is associated with one or
more set occurrences (obviously of different types) as an owner, appropriate opera-
tions must be carried out on the members of these sets before the record is deleted.
One of the actions could be to move the member record occurrences to other set



8.8  Database Manipulatio. 413

occurrences of the same set types (if the membership retention status for the member
record type is mandatory or optional), or to remove the member record occurrences
(if retention status is optional). If these operations are not performed, the DBMS will
delete the record and the members of the sets of which the record is an owner would
also be deleted or removed from the sets before the actual deletion. The erase state-
ment has options that can be included to indicate the extent of deletion to be per-
formed by the DBMS.

8.8.2  Operations on Sets

The DBTG set construct allows related records to be stored as a set. This construct
also allows records to be retrieved via their association in one or more set types. A
format of the find command can be used to locate the members in a set once we have
located the ownei record occurrence. Conversely, another format of the find cor
mand can be used to locate the owner record occurrence once the member re
occurrence has been located.

Locating Records via Sets

To locate a member record occurrence of a member record type 1n a set, we first
locate the appropriate set occurrence by locating the owner record occurrence. Once
the owner record occurvence is located, we can locate the first member record occur-
rence of a given member type by the following format of the find statement:

find first <member record type> within <set type>

The following statements locaie the first BOOK2DUE by CLIENT 234 in the
set occurrence of set type BORROWED owned by 234. The first find statement lo-
cates the owner record occurrence and also sets the currency indicator for the set type
BORROWED. The second find statement locates the first member occurrence of the
record type BOOK_DUE. '

CLIENT.Client_No := 234;
find any CLIENT using CLIENT.Client_No;
find first BOOK_DUE within BORROWED:;

To locate all the books borrowed by the CLIENT 234 we could use the follow-
ing program segment:

CLIENT.CLIENT_No : = 234;

find any CLIENT using CLIENT.Client_No;

find first BOOK_DUE within BORROWED;

while DB_Status = 0 do

begin

(* process the current member record *)
find next BOOK_DUE within BORROWED;,
end




414

Chapter 8  The Network Model

In this example we located the first member record occurrence by the find first
within statement and the subsequent member record occurrences using the find next
within statement. The order in which the members are located depends on the order
specified for the insertion of the members in the set definition.

The clerk at the circulation desk, in addition to checking out the books that have
been borrowed by a client, can identify the branch from which a particular copy of
a book was borrowed. The following program segment locates and retrieves the name
of the branch from which client 234 borrowed the first book.

CLIENT.Client_No := 234;

find any CLIENT using CLIENT.Client_No;

find first BOOK_DUE within BORROWED;

find owner within BOOK_COPY_LENT;

get BOOK_COPY;

display (‘Branch_Id is’, BOOK_COPY .Branch_Id);

In this example, we located the first BOOK_DUE, representing the first book
borrowed by 234 as before. After locating this book we located its owner in the set
BOOK_COPY_LENT. The latter owner is an occurrence of the record type BOOK_
COPY containing the branch information.

- The find first within and the find next within commands for locating members
of a set could be used with a singular set in exactly the same manner. However,
since there is only one occurrence of a singular set of a given set type and it is
owned by the system, there is no need to locate the owner record occurrence before
issuing the find first command.

Set Manipulation

The DBTG data manipulation facility proposed a number of operations for manipu-
lating sets. For instance, if a member record type is defined to have manual optional
membership in a set type, the user could place a record occurrence of the record
record type in a set occurrence. The user could glso remove it from a set occurrence
and then place it, if required, in another set occurrence at some later time.

For discussion purposes in this section, consider the subschema below, used by
a clerk in the acquisition department of the library. The acquisition section of a
library procures copies of new or existing books and assigns them to one or more
branches; it may also transfer a copy of a book from one branch to another and
remove a copy of a book from circulation.

Subschema name is Acquisition

type BOOK = record
Author: string;
Title: string;
Call_No: integer;
end

type BOOK_COPY = record
Call_No: integer;
Copy_No: integer;
Branch_ld: string;
Current_Status: string;
end



8.8  Datgbase Manipulation 41s

~set is COPY_STATUS
owner is BOOK
member is BOOK_COPY optional manual
end ‘
type BRANCH = record
Br_Name: string;
Address: string;
Phone_No: string;
end
set is COLLECTION
owner is BRANCH
member is BOOK_COPY manual optional
end

Manual Set Manipulation

Let us see how to add a new title, Anne of Green Gables by Monigomery, to the
collection. The steps involved are the following:

1. Add a record occurrence for the new title to the record type BOOK.

2. Add a record occurrence to the record type BOOK_COPY for every copy that
is acquired.

3. [Insert the newly created occurrences of BOOK_COPY into the COPY_STATUS
set occurrence, where the newly inserted occurrence of BOOK is the owner.
The first step is performed using the following statements:

BOOK .Author : = ‘Montgomery’;
BOOK.Title := ‘Anne of Green Gables’;
BOOK.Call_No := 1238;

store BOOK;

Assuming that three copies are acquired and that one copy is to be assigned to
each of the three branches of the library, the following statements perform this step.

BOOK_COQPY.Call_No := 1238,
fori:= 1t03do

begin

BOOK_COPY.Copy_No : = i;

case i of
1:BOOK_COPY .Branch_Id : = ‘Lynn’;
2:BOOK_COPY .Branch_Id : = ‘Revere’;
3:BOOK_COPY .Branch_Id : = ‘Salem’
end

BOOK_COPY .Current_Status : = ‘in transit’:

store BOOK_COPY;

end

Note: In the above example, we have embedded the DML statements in an
application program in a high level language.



416

Chapter 8 The Network Model

At this point the database contains one record occurrence for the new book and
three record occurrences, one for each copy of the book. Now we have to place each
of these three occurrences of the record type BOOK_COPY in the set type COPY_
STATUS wherein the owner is BOOK = 1238. The DBTG command to insert a new
member into a set occurrence is the connect command, which specifies the record
type that has to be inserted into the set type. The currency indicators hgve been
appropriately initialized to point to the correct member record type occurrence and
the correct owner record type occurrence.

The following statements insert the members of the record type BOOK_COPY
in the set occurrence of the set type COPY_STATUS wherein the owner is BOOK =
1238:

BOOK.Call_No := 1238;
find any BOOK wsing BOOK.Call_No;
- (* establish the pointer for the set type
COPY_STATUS *)
BOOK_COPY.Call_No := 1238,
find any BOOK_COPY using BOOK_COPY .Call_No
retaining currency for COPY_STATUS,
while DB_Status = 0 do
begin
connect BOOK_COPY to COPY_STATUS;
find duplicate BOOK_COPY using
BOOK_COPY.Call_No
retaining currency for COPY_STATUS;
end

In the above program segment implementation we used the format of the find
statement, which suppresses the updating of the currency indicator for the set type
COPY_STATUS. Without the retaining currency clause, for example, the second
find statement would have updated the currency indicator for the set type COPY_
STATUS to point to the record occurrence of the record type BOOK_COPY. The
reason for this is that the record type BOOK_COPY appears as a member of the set
type BOOK_COPY_STATUS in the subschema.

An alternate method of connecting the record occurrences of the record type,
wherein we locate the owner for each insertion, is given below:

BOOK.Call_No := 1238,
BOOK_-COPY.Call_No := 1238;
find any BOOK_COPY using BOOK_COPY .Call_No;
(* establish the currency indicator for the
record type BOOK_COPY *)
while DB_Status = 0 do
begin
find any BOOK using BOOK.Call_No;
(* establish the currency indicator for the
- set type COPY_STATUS *)
connect BOOK_COPY to COPY_STATUS;
find duplicate BOOK_COPY using
BOOK_COPY Call_No;
end



8.8  Database Manipulation 417

- The reason we do not use the retaining clause in this case is that the find state-
ment for the record type BOOK will set the currency indicator of ‘the record type
BOOK as well as the set type COPY_STATUS and run unit. However, it will not
update the currency indicator for the record type BOOK_COPY.

We can combine the operation of storing the record occurrence for BOOK_
COPY with connecting the occurrence in the appropriate set occurrence in the set
type COLLECTION, as illustrated by the following program segment:

BOOK.Call_No := 1238,;
BOOK_COPY.Call_No := 1238;
fori: = 1t3do

begin
BOOK_COPY.Copy_No := i,
case 1 of
1:BOOK_COPY .Branch_Id := *Lynn ;
2:BOOK_COPY .Branch_Id : = ‘Revere’;
3:BOOK_COPY .Branch_Id := ‘Salem’
end

BOOK_COPY.Current_Status := ‘in transit’;

store BOOK_COPY;

BRANCH.Br_Name := BOOK_COPY .Branch_ld;

find any BRANCH using BRANCH.Br_Name;
(* establish the pointer for the set type

COLLECTION *)
connect BOOK_COPY to COLLECTION;
end

An occurrence of a record type declared in the set definition to be an optional
member of a set could be removed using the disconnect statement. However, before
this statement is issued the currency indicator for the record type must be updated to
point to the specific occurrence of the record type that is to be removed from the set
occurrence. The currency indicator of the set type must also be updated to point to
the owner record occurrence of the set type wherein the record is a member.

To remove the Copy_No = 3 of the book with Call_No = 1238 from the set
occurrence of the set type COPY_STATUS, we could use the following statements:

done : = false;
BOOK.Call_No := 1238;
find for update any BOOK using BOOK.Call_No;
(* establish the currency indicator for the set type
COPY_STATUS *) ,
find first BOOK_COPY within COPY_STATUS:
(* now find its member until Copy_No = 3 is found then
disconnect it *)
while DB_Status = 0 and not done do
if BOOK_COPY.Copy_No = 3 then

begin '
disconnect BOOK_COPY from COPY_STATUS:
done : = true;

end



420

Chapter 8  The Network Model

The CLIENT 234 returning the BOOK 1237 would require the circulation clerk
to delete the appropriate BOOK_DUE record. The deletion of the record would de-
tach the record from the two set occurrences. In the following application program
section, we illustrate the location of the member record occurrence of the record type
BOOK_DUE via the set occurrence of the set type BORROWED owned by CLIENT
234. We use this member record occurrence of BOOK_DUE in locating the ownet
record occurrence in the set BOOK_COPY_LENT and modify the data-item Cur-
rent_Status of the record type BOOK_COPY. Before issuing the erase instruction
we reestablish the currency indicator of the run unit to the record occurrence of
BOOK_DUE by locating it as a member in BOOK_COPY_LENT.

done : = false;
CLIENT.Client_No := 234;
find any CLIENT using CLIENT.Client_No;
find first BOOK_DUE within BORROWED;
while DB Status = 0 and not done do

if BOOK_DUE.Call_No = 1237 then

done := true
else find next BOOK_DUE within BORROWED;
if done then
begin

find for update owner within BOOK_COPY_LENT;
BOOK_COPY.CURRENT _Status : = in;
modify BOOK_COPY;
find for update first BOOK_DUE within BOOK_COPY_LENT;
disconnect BOOK_DUE from BOOK_COPY_LENT;
erase BOOK_DUE;
end
else
error routine

Deletion of an Owner Record Occurrence

The retention status for the sets BORROWED has been defined as mandatory. An
attempt, as shown below, to delete the occurrence of the CLIENT 234, which is the
owner of a nonempty set, will fail until all the members in the set are deleted.

CLIENT.CLIENT_No : = 234,
find for update any Client using CLIENT.Client_No;
erase CLIENT;,

However, if the retention status for the member record type in the set BOOK_
COPY_LENT had been defined as fixed, an'attempt to delete the occurrence of the
owner record type BOOK_COPY (i.e., the record 1237 2 Lynn LENT) would have
been successful. When the owner record occurrence is deleted in a set having mem-
ber record types with the fixed retention status, the member record occurrences will
be deleted as well. Furthermore, if the member records are themselves owner of set
types with membership retention status fixed, the deletion will be done recursively.
The deletion of the member records would have some very undesirable effects if the



8.10 Summany 421

member record occurrences were mempers of other set types. In such a case, the
preferable action for the DBMS would be to disconnect these member records from
the owner record being deleted.

The retention status for the members of the set BOOK_COPY_LENT has been
defined as optional. An attempt to delete a record occurrence of BOOK_COPY with
a nonempty set would be successful. The member record occurrences in th
BOOK_COPY_LENT owned by the occurrence of BOOK_COPY are deta
the set occurrence prior to the deletion of the owner. These member
rences would continue to exist in the database.

Concluding Remarks

led to the implementation of a large number of DBMSs from commercial software
houses. These systems were designed to run on mainframe and midsize computers.

The advantage of the model is that the data structure diagrams give the user a
clear pictorial means of understanding the database structure. The sets and the rela-
tionships between reeord types involved in the sets are predefined. These predefined
relationships are usually implemented at the physical level with the use of link struc-
ture. This results in faster access to relatedy records than is possible in the relational
case using a simple join operation to navigate dynamically through the various rela-
tions.

The NDM builds indexes on user (DBA) specified key data-items for direct
access to records or groups of records. Once one of the owner record occurrences is
located by the use of a selection criterion based on a key, the record occurrences of
the member record type(s) can be retrieved relatively quickly.

On the minus side, the query language is procedural and requires the user to
navigate through the database by specifying sets, owners, and members. This in turn
means that the user has to be cognizant of the structure of the database. '

Notwithstanding the above, the model continues to be used extensively for cor-
porate databases in many organizations.

With the current interest in the relational approach, a large number of network-
based DBMSs are redesigned to offer the user an optional relational interface, thus
combining convenience for the user and at the same time avoiding some of the inef-
ficiencies of the relational approach.

Summary

The network data model represents entities by records and expresses relationships
between entities by means of sets implemented by the use of pointers or links. The
modei allows the representation of an arbitrary télationship.'Thc DBTG proposal
places a number of restrictions on the use of the links. )

The basic data definition structure of the DBTG proposal includes records and
sets. Record types are representations of entity types and are made up of data-items,
vectors, and repeating: groups.




424

841

Chapter 8  The Network Model

(d) A set occurrence is empty when it has no member record occurrences.

(e) A set type can have only one record type as its member.

(f) A set can represent only a certain relationship between entities; however, not all
possible relationships between entities can be conveyed through a set.

(g) Data independence and data integrity suffer due to the set concept.

Consider a network database with a schema corresponding to the data structure diagram of
Figure 8.22, where all the sets have an automatic fixed membership status. Can data ever be
inserted in such a database? Amplify your answer with adequate explanations.

Draw the data structure diagram of the complete library database system discussed in this
chapter and comment on the statement that it is a purely hierarchical structure.

Consider the database for the UHL that we discussed in Chapter 2. Let us add to the
database the requirement of keeping the statistics on the performance of the various lineups
during a season. This extension is illustrated in Figure B. A lineup is the group of players
from a franchise that plays together for certain shifts during a game. There can be a number
of different lineups used during a game and lineups may change from game to game during a
season: Here we have added the intersection record LINEUP and the sets P_L and Fr_L.
Thus, the relationship between a player and lineup is one to many; similarly the relationship
between & lineup and the franchise is aiso one to many. Give the modified schema for the
database and write a pseudocode program to find the best lineup for each player.

Extended network model for UHL database.




8.10  Summary - 425

8.12 The following is an incomplete list of DBMSs marketed by various software houses. The
names are registered trademarks of the respective companies. Choose one of these DBMSs
and describe it in terms of the generalized features described in this chapter.

DBMS Digital Equipment Corp.
DMS-11 Unisys

DMS-90 Unisys

DMS-1100 Unisys

IDMS Cullinet

IDS 11 Honeywell

IMAGE Hewlett-Packard
TOTAL Cincom

Bibliographic Notes

Several commercial database management systems based on what was to be the network ap-
proach were implemented in the late 1960s. The DBTG proposal evolved from these systems.
The system that had the most influence on the proposal was the Integrated Data Store (IDS)
system at General Electric (Bach 64). The IDS was the result of Bachman’s early work and
was developed under his supervision. Bachman is also credited with developing the data struc-
ture diagrQﬁi for representing records and~links used in the network data model (Bach 69). The
data structure aiagram, like the more recent E-R diagram, is an aid in the logical design of a
database sys,tém.

The Database Task Group (DBTG) was set up as a special group within CODASYL. The
DBTG group issued a final report in 1971 and this was the first standard specification for a
database system. A number of commercial database management systems were based on this
report. However, it has not been accepted as a standard by ANSI (American National Stan-
dards Institute). The DBTG was reconstituted as the Data Description Language Committee
(DDLC), which produced a revised version of the scheme data description language (DDL).
.The ANSI-X3H2 committee received this report, modified it to some extent, and issued the
1981 DDL draft. This, too, has not been accepted to date because the draft lacks a data
manipulation language to go with the DDL. In 1984, the X3H2 committee proposed NDL, a
standard network database language based on the original DBTG specification. This too has
yet to be standardized.

The DBTG proposal is discussed in the CODASYL. DBTG 1971 report (CODA 71)
and by Olle (Olle 78). Modifications to the original proposal and the DDL are presented in
(Coda 78).

Since the DBTG proposal of 1971 there have been various modifications, not only by
standards committees but also by software houses offering commercial DBMSs based on this
model. Some examples are the DMS-1100 from Unisys (previously called Sperry Univac and
which recently has merged with Burroughs) (Sper), TOTAL from Cincom (Cinc), and IDS I
from Honeywell (Hone). Some of these systems are discussed in textbooks by Cardenas (€ard
85), Date (Date 86), Kroenke (Kroe 83), Tsichritzis and Lochovsky (Tsic 77), and Uliman
(Ullm 82» :




428

9.1

Chapter 9 The Hierarchical Data Model

Like the network data model, the hierarchical data model uses records arid pointers
or links to represent entities and the relationships among them. However, unlike the
network data model, the data structure used is a rooted tree with a strict parent-to-
child ordering. We are not going to concentraté on any one of the commercially
available DBMSs based on the hierarchical model, although the discussion is some-
what oriented toward features included in IBM’s IMS. database management system,
the most prominent system of this type.

The Tree Concept

Trees in we form ot a famuy tree or genealogical tree trace the ancestry of an indi-
vidual and show the relationships among the parents, children, cousins, uncles,
aunts, and siblings. A tree is thus a collection of nodes. One node is designated as
the root node; the remaining nodes form trees or subtrees.

An ordered tree is a tree in which the relative order of the subtrees is signifi-
cant. This relative order not only signifies the vertical placement or level of the
subtrees but also the left to right ordering. Figures 9.1a and b give two examples of
ordered trees with R as the root node and A, B, and C as its children nodes. Each
of the nodes A, B, and C, in turn, are root nodes of subtrees with children nodes
M, E), (F), and (G, H, J), respectively. The significance in the ordering of the
subtrees in these diagrams is discussed below '

Traversing an ordered tree can be done in a number of ways. The order of
processing the nodes of the tree depends on whether or not one processes the node
before the node’s subtree and the order of processing the subtrees (left to right or
right to left). The usual practice is the so-called preorder traversal in which the

node is processed first, followed by the leftmost subtree not yet processed, as shown
below:

Procedure Preorder (node);
process node
left_child : = leftmost child node not processed yet
while left_child # null do

begin
Preorder (left_child)
left_child : = leftmost child node not
processed yet
end

end

The preorder processing of the ordered tree of Figure 9.1a will process the nodes
in the sequence R, A, D, E, B, F, C, G, H, J. ' '

The significance of the ordered tree becomes evident when we consider the
sequence in which the nodes could be reached when using a given tree traversing
strategy. For instance, the order in which the nodes of the hierarchical tree of Figure
9.1b are processed using the preorder processing strategy is not the same as the order
for Figure 9.1a, even though the tree of part b contains the same nodes as the tree
of part a.



‘9.1 The Tree Concept 429

Figure 9.1 Ordered tree where (c) illustrates hierarchical pointers and (d) illustrates child/sibling
pointers.

D—'——-»E—J F G—»H—>»]
(c)
II! Root of tree
l Child pointer
__ Siblng _ o ___ »C
I pointer l | .
D----3%E F G--pH--»]

()]

Two distinct methods can be used to implement the preorder sequence in the
ordered tree. The first method, shown in Figure 9.1c uses hierarchical pointers to
implement the ordered tree of part a. Here the pointer in each record points*to the
next record in the preorder sequence. The second method, shown in part d uses two
types of pointers, the child and the sibling pointers. The child pointer is used to
point to the leftmost child and the sibling pointer is used to point to the right sibling. -
The siblings are nodes that have the same parent and the right sibling of a node is

" the siblinﬁ that is immediately to the right of the node in question.



432

‘Chapter 9 The Hierarchical Data Model |

The record types DEPT_SECTION and EMPLOYEE in turn are the parents of the
record types EMPL_ASSGNMI\IT (employee -assignment) and DS_ASSGND (depart-
ment or section assigned to), respectively. (Some instances of these hierarchical trees
are given in Figures 9.4, 9.5 and 9.6.)

A many-to-many relationship can only be represented in the hierarchical aata
model by replication of the record concerned or by the use of virtual records. For
instance, the many-to-many relationships between a BOOK and CLIENT or between
DEPT_SECTION and EMPLOYEE, which were represented in the network model
by introducing an intermediate record type and two sets, are represented in the hier-
archical model by replication of the records or by the use of virtual records. Virtual
records are basically pointers that point to the actual physical records in the database.
We discuss virtual records in Section 9.2.1.

In Figure 9.3, LIBRARY lsh dummy parent that holds together the three hier-
archical trees BOOK_TREE, CLIENT_TREE, and BRANCH_TREE. A DBMS on a
given computer system belonging to a library is supporting that library system, so
there is no need to actually store a single occurrence of the record type LIBRARY.
However, these disjointed trees can be considered to be connected to a single occur-
rence of the dummy LIBRARY node, and therefore the database contains a single
hierarchical tree with this dummy LIBRARY node as the root node. Traversing this
tree becomes equivalent to going through the entire database.

If the DBMS were to support the data for more than one library system, the
LIBRARY node would actually exist and would form the root node of the subtrees BOOK
TREE, CLIENT_TREE, and BRANCH_TREE. In this case, we would have a forest
of trees and for each library system supported by the DBMS, there would exist in
the database a tree with the corresponding library node as the root node.

Consider the following definitions for the record types BOOK and BOOK_
COPY for the records in the first hierarchical tree, BOOK_TREE:

type BOOK = record
Author: string;
Title: string;
Call_No: string;
end

type BOOK_COPY = reccrd
Call_No: string;
Copy_No: integer;
Branch_ld: string;
Current_Status: string;
end

In Figure 9.4, we give some instances of the hierarchical trees for BOOK_
TREE. One instance of the tree corresponds to the parent (James Munich 1231) of
the record type BOOK; it has its child, the record type BOOK_COPY occurrence
(1231 Copy 1 Lynn Lent). Another instance of this hierarchical tree consists of the
parent record occurrence (Hugo Les Miserables 1234) and its two children record
occurrences of the record type BOOK_COPY.

. The record types in the second hierarchy with the root node CLIENT can be
defined as follows:



i -

9.2 Hierarchical Data Model 433

L]
Figure 9.4 Occurrences of BOOK_TREE hierarchical tree.

Im  Mumich 1231 ] I Dickens Hard Times , 1232 ° ]
e
1231 Copyl Lym  Lem | [1232?‘ Copy2 Revere Lent |

type CLIENT = recora
Client_No: string,
Name: string;
Address: string;
end

ype BOOK_DUE = record
Call_No: string;
Copy_No: integer;
Branch_Id: string;
Current_Status: string;
Due_Date : string;
end;

Figure 9.5 gives two occurrences of this hierarchy. The first tree corresponas 10
the CLIENT Smith who has borrowed two BOOKs with Call_Nos 1231 and 1234

with the Due_Dates of 12/06 and 12/15, respectively.

Figure 9.5 Occurrences of CLIENT_TREE hierarchical tree.




436 Chapter 9  The Hierarchical Data Model

9.2.2  Expressing a Many-to-Many Relationship

Let us consider the method that we can use 0 express the relationship between
BOOK and CLIENT. As we discussed in Section 8.1.1 this is a many-to-many re-
lationship because the library may have more than one copy (BOOK_COPY) of a
given title. However, since only one client can borrow a given copy at a given time,
the relationship between a CLIENT and a BOOK_COPY is one-to-one.

In the network model we converted the many-to-many relationship between
BOOK and CLIENT into a one-to-many set between BOOK and BOOK_COPY. We
then introduced an intermediate recori BOOK_DUE to hold the common data be-
tween CLIENT and BOOK_COPY. and the two one-to-one sets between CLIENT
and BOOK_DUE and BOOK_COPY and BOOK_DUE.

In the hierarchical model we can easily express the one-to-many relationship
between BOOK and BOOK_COPY as a hierarchy that can be represented by a tree

as follows:
tree is BOOK_TREE
BOOK is parent
BOOK_COPY is child
end

Examples of this hierarchical tree are shown in Figure 9.4.
Similarly, we can express the one-to-many relationship between a client and the
items she or he borrows by a-hierarchical tree CLIENT_TREE as follows:

tree is CLIENT_TREE
CLIENT is parent
BOOK_DUE is child
end

Examples of this hierarchical tree are shown in Eigure 9.5.

Suppose the relationship between a BOOK_COPY and a CLIENT who borrows
it is expressed by replication as shown in Figures 9.4 and 9.5. The data in BOOK_. -
DUE, except for Due_Date, is a duplication of the corresponding data in BOOK_
COPY. If a virtual record is used for BOOK_DUE, we could indicate this by the
following definition:

type BOOK_DUL = recora
{Call_No: string;
Copy_No: integer;
Branch_ld: string;
Current_Status: string;}
virtual of logical parent
BOOK_COPY in BOOK_TREE;
Due_Date: string;
end

This indicates that the data items enclosed in the brackets of the record BOOK-
DUE are virtual and are derived from the physical record BOOK_COPY, which is
defined as the logical parent of the record BOOK_DUE, BOOK_DUE being its log-
iical child. The data item Due_Date in this case is the intérsection data jin the rela-




9.2 Hierarchical Data Model » 437

Figure 9.7 Using virtual records.

tionship between CLIENT and BOOK_COPY. Note that in the above example, the
virtual record type BOOK_DUE in the hierarchical tree CLIENT_TREE contains data
that is derived from a separate physical hierarchical tree, namely BOOK_TREE.
Similarly, to keep track of which CLIENT has borrowed a given BOOK_
COPY, we can introduce a virtual record type VIR_CLIENT and a one-to-one rela-
tionship BOOK_COPY_TREE between BOOK_COPY and VIR_CLIENT as follows:

tree is BOOK_COPY_TREEL
BOOK_COPY is parent
VIR_CLIENT is child
end

type VIR_.CLIENT = record
{ Client_No: string;
Name: string;
Address: string;}
virtual of logical parent CLIENT in CLIENT_TREE;
end

Figure 9.7 now includes the modified section of the hierarchical structure dia-
gram of Figure 9.3, showing the many-to-many relationship between BOOK and
CLIENT.

The problem with this hierarchy is that to determine the author and title, etc.,
of the volumes borrowed by client Smith, we have to go through the following in-
efficient series of operations:

® Go from the required occurrence of the record type CLIENT to the first
occurrence of its child record type BOOK_DUE.

@ Follow the pointer to the logical parent of BOOK_DUE to an occurrence of BOOK
, COPY and note the Call_No.
@ Search the occurrences of BOOK with the same Calli_No and retrieve the details
pertaining to the Author, etc. '
® Repeat for each child occurrence of BOOK_DUE belonging to Smith.
Such queries can be handled more efficiently if we add another dependent record

- to CLIENT_TREE, such as VIR_BOOK, defined to be virtual of the logical parent
BOOK as follows on the next page. : )



Chapter 9 The Hierarchical Data Model

———

Figure 9.11

ASSGND is a logical child of the record type DEPT_SECTION. This virtual record
contains the intersection data Hours, which represents the hours worked by the em-
ployee during a work week for a given DEPT_SECTION. The intersection data is a
replication of that in the virtual record EMPL_ASSGNMNT. Unlike the examples of
the virtual record discussed in Section 9.2.2; the virtual records EMPL._ASSGNMNT
and DS_ASSGND have as their logical parent a record in the same physical hierar-
chical tree, namely, the BRANCH_TREE of Figure 9.3.

tree is EMPLOYEE_TREE
EMPLOYEE is parent
DS_ASSGND is child
end

type EMPLOYEE = record
Emp_Name: string;
Home_Address: string;
Phone_No: string;
end

type DS_ASSGND = record .
{Ds_Name: string;
Room_No: string;
Phone_No: string;}
virtual of logical parent
DEPT_SECTION in BRANCH_TREE
Hours: integer;
end

Figure 9.11 gives some occurrences of the hierarchical trees DS_TREE and
EMPLOYEE_TREE. The instance of DS_TREE rooted by the Acgstn Dept is shown

Sample occurreness of OS_TREE AND EMPLOYEE_TREE,




9.3  Data Definition 441

9.3

to have two occurrences of the dependent record type EMPL_ASSGNMNT. One o!
these contains the intersection data corresponding to employee Jerry and the other is
for employee Larry. A pointer in each of these records, point to the logical parent.
The above example is an illustration of a paired bidirectional logical relation-
ship of the hierarchical model. In such a relationship a many-to-many correspon-
dence between two record types is resolved by introducing two virtual records with
these record types as the logical parents. In the above example, the record types are

DEPT_SECTION and EMPLOYEE. EMPL_ASSGNMNT is a virtual record that is

a physical child of DEPT_SECTION and a logical child of EMPLOYEE; DS_
ASSGND is a physical child of EMPLOYEE and a logical child of DEPT_
SECTION. Each of these virtual record types contains appropriate pointers to the
logical parents and the intersection data, Hours, may be replicated as we have done.
The replicated data is stored in the two virtual record types and could lead to incon-
sistencies. Since the DBMS is aware of this controlled redundancy it has the respon-
sibility for ensuring that whenever one of the replicated values in the intersection
data is changed, its twin value is also changed.

Figure 9.12

The hierarchical database consists of a collection of hierarchical trees (or set of span-
ning trees) which are described using a database description facility. Figure 9.12
gives part of the hierarchical definition tree for our library database example. The
corresponding data definition is given below. The trees described could be actual
physically stored trees or logical trees derived from the physically stored trees. In
the latter case, the logical trees can be considered to be user or external views. The
logical trees are also hierarchical and derived from one or more physical trees and
could contain virtual records. Defining a new logical tree thus may involve imple-
menting pointers for the virtual records and as such is a reorganization of the physical
database. Such a reorganization is performed by the DBA. A virtual record in a
hierarchical tree can be materialized from its logical parent record. The latter may or
may not be in the same physical hierarchical tree.

We used a Pascal-like convention to define the database, wherein we introduced
the tree structure by listing the root of the tree and all its children record types. For
the sake of clarity and simplicity, we avoided the introduction of implementation-
related details such as specifying the number and types of pointers. In the commer-
cially available database management products based on the hierarchical data model,
the data definition requires the specification of these details.

+

Logical database as viewed by circulation clerk.




Chapter 9  The Hierarchical Data Model

9.4.2

Basic Data Manipulation

9.4.3

The basic data retrieval command in the hierarchical data model is the get command,
which unlike in the network data model need not be preceded by a find command:
The command retrieves the appropriate occurrence of the record type, places it in the
corresponding record type template in the UWA, and sets the currency indicators for
the relevant hierarchical tree. In this instance, the currency indicators will be the
current record of the run unit and the parent of the current record retrieved. The
record occurrence to be retrieved is specified by indicating the condition to be met
by the retrieved record. The hierarchical path to be used for the retrieval may also
be given to retrieve a record. For instance, the condition specified in the get com-
mand may involve the parent (or one of the grandparents) of the record being re-

. trieved.

The nrst tormat ot the get command that we will discuss is the get first. This
format is sometimes called get unique or get leftmost. Note that the hierarchical
tree is traversed using the preorder scheme. Consequently, the get first command will

- retrieve the first record that meets this condition. The syntax of this format of the get

command is as follows:
get first <record type> where <condition>

The where <condition> clause is optional and if it is omitted, the first record
of the specified record type is retrieved and placed in the corresponding record tem-
plate within the UWA. Once the command is successfully executed, the DB-Status
register contains a value of 0 and the currency indicators are set. If the command is
not executed successfully, i.e., if no record exists in the database that satisfies the
specified condition, the the DB-Status will contain an error code.

For the sample database given in Figure 9.13b the following statements will
locate the first record type BOOK_DUE for CLIENT Smith, and if the record is
successfully located then the values for the data items Call_No and Due_Date are
displayed:

get first BOOK_DUE where CLIENT.Name = 'Smith’;
if DB-Status = O then
display (BOOK_DUE.Call_No, BOOK_DUE.Due_Date);

The above statements for the sample database will display 1231 12/06.

Sequential Retrieval

The get next statement is used in the hierarchical database to do sequential process-
ing in preorder. Once the position for a run unit is established in the database with a
get first statement, the get next statement performs the retrieval in the forward sense.
If the database contains disjoint hierarchical trees, we assume that the DBMS pro-
vides a dummy record and these disjoint trees are considered the children of the
DBMS supplied unique dummy root record occurrence. The order of these disjoint
hierarchical trees is their order in the data definition. For our example, we assume
that there is a dummy record LIBRARY, which is the root of the hierarchical trees BOOK



Figure 9.13

9.4 . Data Manipulation 445

(a) Sample database: BOOK_COPY_TREE; (b) sample database: CLIENT_TREE.

| 1291 Copyl Lym  Lem

1232 Copyl  Revers - Leat. |

(a)

I

N1 Dickens Hard Times 1232 |

B3 coy2 Lym 12 Hugo  LesMiserables 1234 |
' ®)

TREE, CLIENT_TREE, and BRANCH_TREE. The format of the get next state-
ment is:

get next <record type> where <condition>

As in the get first statement, the where clause is optional; the <record type>
specification is also optional. In case the get first statement appears without any
options, the retrieval is of the next record in the database in preorder. If the <record
type> is specified, the retrieval is of the next record of the specified type in the
preorder. If both the <record type> and the where <condition> are included, the
retrieval is the next record of the specified type that satisfies the <condition>.

Once we have located the first occurrence of the BOOK_DUE child of Smith,
we can retrieve and display the subsequent occurrences using the following on the
next page. ’



448

Chapter 9 The Hierarchical Data Model .

Figure 9.18  Sample database contents.
[oames  Wumics ™ w2t | | Dickens  HardTimes 1232
L1231 Copyl Lym Lemt Lzachprl Revere Lent
181 Copy2 Lym I i | 1232 Copy2” Sangs /mn

9.5.1

Insert

The format of the command to insert a new occurrence of a record type is given by:
insert <record type> where <condition>

When a new record is to be inserted in the database, the parentage of the record,
unless it is at the root of a hierarchical tree, is specified with the where clause.
Without the parentage information the DBMS will insert the record in the first pos-
sible position where the specified record type appears in the data definition. When
the new record to be inserted is a child record type, we assume that it will be inserted
in the first position in the preorder traversal, which will be to the left of the current
leftmost child. The record to be inserted is first created in the record template in the
UWA before the insert statement is executed.

The following statements create a new occurrence of the record type BOOK in
the database:

BOOK .Author : = "Montgomery';

BOOK.Title : = 'Anne of Green Gables’;

BOOK.Call_No : = 1235;

insert (BOOK);

Here we did not specify the parentage of the record type to be inserted because
it is at the root of the hierarchical BOOK_TREE.

The following statements insert a copy of this new title into the database tree
occurrence, corresponding to the new root record occurrence just inserted in the

-database. The parent record is specified in the where clause.

- BOOK_COPY .Call_No : = 1235;
/’BOOK_COPY Copy._N =1



9.56.2

9.5  Updates 449

BOOK_COPY .Branch_Id : = 'Lynn’;
BOOK_COPY .>ratus : = 'transit’;
insert (BOOK_COPY)

where (BOOK.Call_No = 1235);

Without the where <condition> clause, the record will be inserted in the data
base, but since a child record cannot exist in a hierarchical database without a parent
record, it is connected to the first possible position where such a record could exist.
For our sample database, assuming that Figure 9.15 is the preorder of the BOOK_
TREE hierarchy, the new BOOK_COPY will be inserted in the iree with the (James
Munich 1231) root node if the insert statement did not have the where clause.

Modification and Deletion

A record that is to be modified or deleted from the database must first be retrieved
using a locking form of the get statement as follows:

get hold first <record type>

The need to hold the record arises when there are a number of concurrent run units
using the database. A run unit issuing the get hold locks out the other programs from
the record occurrence and thus avoids the anomalies associated with concurrent up-
dates (see Chapter 12).

The following statements modify the BOOK_COPY.Branch_Id of the second
copy of the BOOK (James Munich 1231) from Lynn to Salem.

get first (BOOK)
where BOOK.Call_No = 1231;

get hold first BOOK_COPY '
where BOOK_COPY.Copy.No = 2;

BOOK_COPY .Branch_Id : = 'Salem’;

BOOK_COPY .Status : = 'transit’;

replace;

The first statement locates the root node of the hierarchical tree occurrence
where the required BOOK is the parent. The next statement retrieves and locks the
child record occurrence of BOOK_COPY where the BOOK_COPY.Copy_No is 2.
The fields to be modified are changed in the next two statements within the record
template. The last statement replaces the record occurrence of BOOK_COPY with
the modified record. After execution of the replace statement, the lock on the record
occurrence of BOOK_COPY is removed.

The following statements delete the BOOK_COPY record occurrence of the
second copy of the BOOK (Dickens Hard Times 1232).

get first (BOOK)
where BOOK.Call_No = 1232;
get hold first BOOK_COPY
where BOOK_COPY.Copy_No = 2:
delete;



450

Chapter 9 The Hicrarchical Data Model

9.5.3

The first statement locates the root node of the hierarchy tree occurrence, where
the required BOOK is the parent. The next statement retrieves and locks the child
record occurrence of BOOK_COPY, where the BOOK_COPY.Copy_No is 2. The
last statement deletes the record occurrence of BOOK_COPY.

When a record to be deleted is a parent record occurrence of a hierarchical tree
or subtree, all the children (and grand children) record occurrences are also deleted.
This action is similar to the deletion of the owner record occurrence of a set in DBTG
with fixed membership, wherein all occurrences of the member records are also de-
leted.

Updates of Virtual Records

Let us return to the logical database as viewed by the clerk at the circulation desk,
given in Figure 9.12. The logical database contains a number of virtual records.
Some parts of these records (excluding the intersection data portion) are derived from
their logical parent records, which are actual physical records. For the data retrieval
operations, the logical database can be processed exactly as if the virtual record were
really a physical one. In other words, the virtual records are materialized from their
logical parent records. An update operation, however, could have an effect on the
underlying physical records. Some of these operations are disallowed, while other
operations could cause these logical parent records to be inserted, modified, or de-
leted. The operations that are allowed and their effects are determined by the rules
for.the insert, delete, and replace operations on the record type related to a virtual
record. IMS uses options and associated rules that could be called physical, logical,
or virtual for each of these update operations. The effects of these are, in a way,
similar to the effects of the DBTG merbership insertion and retention options we
discussed in Chapter 8. We summarize some of the possibilities below. Details of
these rules can be found in the application manuals of the commercially available
DBMs based on the hierarchical approach.

Inserting a new occurrence of a CLIENT record is allowed because it is a phys-
ical record in the logical view. The following statements create a new occurrence of
the record type CLIENT in the database.

CLIENT.Client_No : = '237’;
CLIENT.Name : = 'Cook’;
CLIENT.Address : = 'Peabody’;
insert (CLIENT);

Here we need not specify the parentage of CLIENT because it is the root node
of a hierarchical tree.

Inserting an instance of BOOK_DUE for a nonexistent CLIENT will not be
allowed, since in the hierarchical data model a child record cannot exist without the
parent record and such operations will fail.

Inserting an instance of BOOK_DUE for a nonexistent BOOK_COPY, depend-
ing on the rule specified for the logical parent BOOK_COPY, would fail or succeed.
It will fail if the insert rule for BOOK_COPY is specified as physical. However, if
the insert rule for BOOK_COPY is logical or virtual, then on insertion of BOOK_



